
Machine Learning Notebook

The study group organized by Professor Yuhao Ge.

Yu Zhao

Last updated: January 1, 2024

Contents

Chapter 3 (Dec 11) – Matrix Differentiation 3
1.1 Scalar-Vector Equation Derivatives 3

1.1.1 Scalar Equation . 3
1.1.2 Vector Equation . 3
1.1.3 Special Cases . 4

1.2 Linear Regression . 4
1.3 Chain Rule . 5

Chapter 4 (Dec 12) – Gradient Descent 6
2.1 Gradient Descent Principles . 6

2.1.1 Algorithm Steps: . 6
2.1.2 Mathematical derivation . 6

2.2 Programming Implementation in PyCharm 7
2.2.1 Bivariate Function . 7

Chapter 5 (Dec 14) – Econometrics - Linear Regression 9

Chapter 6 (Dec 17) – Econometrics - Introduction to MLE 12

Chapter 7 (Dec 20) – Econometrics - Logit and Mlogit 13
5.1 Linear Probability Model . 13
5.2 Logistic regression . 13
5.3 Multi-nominal Logit . 15

Chapter 8 (Dec 22) – Relationship between Econometrics, ML and DL 16

Chapter 9 (Dec 24) – Concepts in Machine Learning 18

1

ML Learning Notes Contents

Chapter 11 (Dec 31) – Steps for Using Scikit-Learn Module 20

2

ML Learning Notes Chapter 3 (Dec 11) – Matrix Differentiation

※ Chapter 3 (3/31)

1.1 Scalar-Vector Equation Derivatives

1.1.1 Scalar Equation

®𝑦 =


𝑦1

𝑦2
...

𝑦𝑚


, where 𝑓 (®𝑦) is a 1 × 1 scalar, ®𝑦 is an 𝑚 × 1 vector.

Denominator Layout. Number of rows is the same as the denominator.

𝜕 𝑓 (®𝑦)
𝜕®𝑦

=



𝜕 𝑓 (®𝑦)
𝜕𝑦1
𝜕 𝑓 (®𝑦)
𝜕𝑦2
...

𝜕 𝑓 (®𝑦)
𝜕𝑦𝑚

𝑚×1

(1)

Numerator Layout. Number of columns is the same as the numerator.

𝜕 𝑓 (®𝑦)
𝜕®𝑦

=

[
𝜕 𝑓 (®𝑦)
𝜕𝑦1

𝜕 𝑓 (®𝑦)
𝜕𝑦2

. . .
𝜕 𝑓 (®𝑦)
𝜕𝑦𝑚

]
1×𝑚

(2)

1.1.2 Vector Equation

®𝑓 (®𝑦) =


𝑓1(®𝑦)
𝑓2(®𝑦)
...

𝑓𝑛(®𝑦)

𝑛×1

, ®𝑦 =


𝑦1

𝑦2
...

𝑦𝑚

𝑚×1

(3)

𝜕 ®𝑓 (®𝑦)𝑛×1

𝜕®𝑦𝑚×1
=



𝜕 𝑓 (®𝑦)
𝜕𝑦1
𝜕 𝑓 (®𝑦)
𝜕𝑦2
...

𝜕 𝑓 (®𝑦)
𝜕𝑦𝑚


=



𝜕 𝑓1(®𝑦)
𝜕𝑦1

𝜕 𝑓2(®𝑦)
𝜕𝑦1

· · · 𝜕 𝑓𝑛(®𝑦)
𝜕𝑦1

𝜕 𝑓1(®𝑦)
𝜕𝑦2

𝜕 𝑓2(®𝑦)
𝜕𝑦2

· · · 𝜕 𝑓𝑛(®𝑦)
𝜕𝑦2

...
...

. . .
...

𝜕 𝑓1(®𝑦)
𝜕𝑦𝑚

𝜕 𝑓2(®𝑦)
𝜕𝑦𝑚

· · · 𝜕 𝑓𝑛(®𝑦)
𝜕𝑦𝑚


(4)

eg. ®𝑓 (®𝑦) =
[
𝑓1(®𝑦)
𝑓2(®𝑦)

]
=

[
𝑦2

1 + 𝑦2
2 + 𝑦3

𝑦2
3 + 2𝑦1

]
2×1

, ®𝑦 =


𝑦1

𝑦2

𝑦3

3×1

(5)

3

ML Learning Notes 1.2 Linear Regression

𝜕 ®𝑓 (®𝑦)𝑛×1

𝜕®𝑦𝑚×1
=


𝜕 𝑓 (®𝑦)
𝜕𝑦1
𝜕 𝑓 (®𝑦)
𝜕𝑦2
𝜕 𝑓 (®𝑦)
𝜕𝑦3

 =

𝜕 𝑓1(®𝑦)
𝜕𝑦1

𝜕 𝑓2(®𝑦)
𝜕𝑦1

𝜕 𝑓1(®𝑦)
𝜕𝑦2

𝜕 𝑓2(®𝑦)
𝜕𝑦2

𝜕 𝑓1(®𝑦)
𝜕𝑦3

𝜕 𝑓2(®𝑦)
𝜕𝑦3

 =

2𝑦1 2
2𝑦2 0
1 2𝑦3

3×2

(6)

1.1.3 Special Cases

Common special cases in matrix differentiation.
𝜕𝐴®𝑦
𝜕®𝑦 = 𝐴𝑇

𝜕®𝑦𝑇𝐴®𝑦
𝜕®𝑦 = 𝐴®𝑦 + 𝐴𝑇 ®𝑦 = 2𝐴®𝑦 (if A is symmetric.)

1.2 Linear Regression

Find 𝑦1, 𝑦2 to minimize the cost function 𝐽.

𝐽 =

𝑛∑
𝑖=1

[𝑧𝑖 − (𝑦1 + 𝑦2𝑥𝑖)]2

®𝑧 =


𝑧1

𝑧2
...

𝑧𝑛


,®𝑥 =


1 𝑥1

1 𝑥2
...

...

1 𝑥𝑛


,®𝑦 =

[
𝑦1

𝑦2

]

Least Squares Estimation ®̂𝑧 = ®𝑥 ®𝑦 =


𝑦1 + 𝑦2𝑥1

𝑦1 + 𝑦2𝑥2
...

𝑦1 + 𝑦2𝑥𝑛


∴ 𝐽 = (®𝑧 − ®̂𝑧)𝑇 · (®𝑧 − ®̂𝑧)

= (®𝑧 − ®𝑥 · ®𝑦)𝑇 · (®𝑧 − ®𝑥 · ®𝑦)
= (®𝑧𝑇 − (®𝑥 · ®𝑦)𝑇) · (®𝑧 − ®𝑥 · ®𝑦)
= ®𝑧𝑇 · ®𝑧 − 2 · (®𝑥 · ®𝑦)𝑇 · ®𝑧 + (®𝑥 · ®𝑦)𝑇 · (®𝑥 · ®𝑦)

Now, taking the derivative of 𝐽 with respect to ®𝑦 and setting it to zero:

𝜕𝐽

𝜕®𝑦
= −2 · ®𝑥𝑇 · ®𝑧 + 2 · ®𝑥𝑇 · (®𝑥 · ®𝑦) = 0

4

ML Learning Notes 1.3 Chain Rule

Solving for ®𝑦:
®𝑦 = (®𝑥𝑇 · ®𝑥)−1 · ®𝑥𝑇 · ®𝑧

1.3 Chain Rule

For the scalar function 𝐽 = 𝑓 (𝑦(𝑢)):

𝜕𝐽

𝜕𝑢
=

𝜕 𝑓

𝜕𝑦
· 𝜕𝑦
𝜕𝑢

When taking the derivative of a scalar with respect to a vector 𝐽 = 𝑓 (®𝑦(®𝑢)):

𝜕𝐽

𝜕®𝑢
=

𝜕®𝑦
𝜕®𝑢

· 𝜕 𝑓
𝜕®𝑦

5

ML Learning Notes Chapter 4 (Dec 12) – Gradient Descent

※ Chapter 4 (4/31)

2.1 Gradient Descent Principles

Gradient descent aims to iteratively minimize a given loss or cost function.

2.1.1 Algorithm Steps:

1. Define a loss function 𝐽(𝑥0).

2. Choose an initial point 𝑥0 with any precision.

3. Calculate the gradient at the starting point: ∇𝐽(𝑥0) = 𝜕𝐽(𝑥0)
𝜕𝑥0

.

4. Set a learning rate 𝜂.

5. Compute the next point 𝑥1 = 𝑥0 − 𝜂∇𝐽(𝑥0).

6. Iterate the process.

7. Choose a very small number 𝜀.

8. Stop the iteration when the condition |𝐽(𝑥1) − 𝐽(𝑥0)| < 𝜀 is satisfied.

9. The stopping point 𝐽(𝑥1) is the minimum value.

Key Considerations

1. The gradient is a vector pointing in a direction where moving along that
direction increases 𝐽(𝑥) the fastest, and moving in the opposite direction
decreases it the fastest.

2. In problems aiming to find the minimum value, the objective is to make
𝐽(𝑥) decrease rapidly.

3. The absolute value of the gradient diminishes, and the distance between
adjacent 𝑥 values decreases.

2.1.2 Mathematical derivation

Using Taylor expansion, expand 𝐽(𝑥) at any point 𝑥0:

𝐽(𝑥1) = 𝐽(𝑥0) + (𝑥1 − 𝑥0)
𝜕𝐽(𝑥0)
𝜕𝑥0

6

ML Learning Notes 2.2 Programming Implementation in PyCharm

How to make 𝐽(𝑥1) − 𝐽(𝑥0) ≤ 0 ? One simple approach is: 𝑥1 − 𝑥0 = −𝜕𝐽(𝑥0)
𝜕𝑥0

.
In practical applications, it is necessary to introduce a step size adjustment:

𝑥1 − 𝑥0 = −𝜂 𝜕𝐽(𝑥0)
𝜕𝑥0

2.2 Programming Implementation in PyCharm

2.2.1 Bivariate Function

The code implementation of gradient descent for the function 𝑦 = (𝑥 − 2)2 + 1 is
as follows:

import numpy as np

import matplotlib.pyplot as plt

def dJ(theta):

return 2 * (theta - 2) # Calculate the gradient

def J(theta):

try:

return (theta - 2) ** 2 - 1

except:

return float(’inf’)

def gradient_descent(initial_theta , eta, theta_history=[],

n_iters=1000, epsilon=1e-8):

theta = initial_theta # Initialize theta

theta_history.append(initial_theta)

i_iter = 0

while i_iter < n_iters:

gradient = dJ(theta)

last_theta = theta

theta = theta - eta * gradient

theta_history.append(theta)

Termination condition

if abs(J(theta) - J(last_theta)) < epsilon:

break

i_iter += 1

return theta_history

def plot_theta_history(x, theta_history=[]):

7

ML Learning Notes 2.2 Programming Implementation in PyCharm

plt.plot(x, J(x))

plt.plot(np.array(theta_history), J(np.array(theta_history)

), color=’red’, marker="+")

plt.show()

This is an example of a univariate function.

plot_x = np.linspace(-3, 8, 201) # Prepare data

plot_y = (plot_x - 2) ** 2 - 1 # Define the function form

theta = 0.0

eta = 1

theta_history = []

theta_history = gradient_descent(0, eta) # Call the gradient

descent method

print("The function achieves the minimum value at x = %s!" %

theta_history[-1])

print("The minimum value of the function is: %s" % J(

theta_history[-1]))

plot_theta_history(plot_x, theta_history)

8

ML Learning Notes Chapter 5 (Dec 14) – Econometrics - Linear Regression

※ Chapter 5 (5/31)

The main contents of this chapter are as follows:

(1) The principle of linear regression, i.e., why minimize the sum of squared
residuals?

(2) Matrix representation formula for the sum of squared residuals in linear
regression.

(3) Matrix representation formula for the derivative (or gradient) of the sum
of squared residuals.

(4) Based on the above two matrices, one can write code for gradient descent to
solve regression coefficients. The focus is on the iterative formula for coefficients.

(5) We validate the diversity of data used in the code. If the absolute dif-
ferences of variables in X (including the intercept term) are not significant, the
results are relatively accurate. However, if the differences are large, there may
be cases where the absolute values of the sum of squared residuals are too large.
This is because it is a sum of squares. Generally, the approach is to divide it by
the length of the data. If the absolute value of the sum of squared residuals is too
large, the absolute value of the gradient may also be relatively large. The general
approach is to divide the gradient by the length of the data. Additionally, ad-
justing the learning rate to be very small may be necessary. After making these
adjustments, it may lead to less accurate estimates of the intercept coefficient.

(6) Through the analysis in (5), we can understand why in future machine
learning, data normalization is generally performed.

Below is my assignment code.

import numpy as np

from sklearn.model_selection import train_test_split

class LinearRegression:

def __init__(self):

self._theta = None

self.intercept_ = None

self.coef_ = None

def fit_gd(self, X_train, y_train, eta=0.01, n_iters=10000)

:

X_b = np.c_[np.ones((len(X_train), 1)), X_train]

initial_theta = np.zeros(X_b.shape[1])

9

ML Learning Notes Chapter 5 (Dec 14) – Econometrics - Linear Regression

def J(theta, X_b, y):

return ((y - X_b.dot(theta)).T @ (y - X_b.dot(theta

))) / len(X_b)

def DJ(theta, X_b, y):

return X_b.T.dot(X_b.dot(theta) - y) * 2 / len(X_b)

def gradient_descent(X_b, y, initial_theta , eta,

n_iters, epsilon=1e-8):

theta = initial_theta

for _ in range(n_iters):

last_theta = theta

theta = theta - eta * DJ(theta, X_b, y)

if abs(J(theta, X_b, y) - J(last_theta , X_b, y)

) < epsilon:

break

return theta

self._theta = gradient_descent(X_b, y_train,

initial_theta , eta, n_iters)

self.intercept_ = self._theta[0]

self.coef_ = self._theta[1:]

return self

def predict(self, X_predict):

assert self._theta is not None

assert X_predict.shape[1] == len(self._theta) - 1

X_b = np.c_[np.ones((len(X_predict), 1)), X_predict]

return X_b.dot(self._theta)

Generate simulated data

np.random.seed(666)

x = 2 * np.random.random(size=100)

y = 4.0 + 3.0 * x + np.random.normal(size=100)

X = x.reshape(-1, 1)

10

ML Learning Notes Chapter 5 (Dec 14) – Econometrics - Linear Regression

Split the dataset

X_train, X_test, y_train, y_test = train_test_split(X, y)

Fit using gradient descent

reg = LinearRegression()

reg.fit_gd(X_train, y_train)

print("Coefficients:", reg.coef_)

print("Intercept:", reg.intercept_)

11

ML Learning Notes Chapter 6 (Dec 17) – Econometrics - Introduction to MLE

※ Chapter 6 (6/31)

Let 𝑦 be a random variable with a probability density function dependent
on parameters 𝜃 (a vector, possibly with multiple parameters, e.g., mean 𝜇

and variance 𝜎). Then, the probability of observing a sequence of numbers
𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑛 is given by:

𝐿(𝑦 |𝜃) =
𝑛∏
𝑖=1

𝑓 (𝑦𝑖 , 𝜃)

Here, the expression 𝐿(𝜃) is called the likelihood function. Given a specific
set of parameters 𝜃, it becomes a concrete numerical value. Now, consider the
inverse problem where we lack information about 𝜃 but possess information
about 𝑓 . How can we infer 𝜃 using this information?

• We can express the likelihood function mentioned above as a function of 𝜃:

𝐿(𝜃 |𝑦, 𝑓) =
𝑛∏
𝑖=1

𝑓 (𝑦𝑖 |𝜃)

• A natural idea is that 𝜃, which maximizes the above function, is the one we
seek. Denote this optimal 𝜃 as �̂�𝑀𝐿𝐸:

�̂�𝑀𝐿𝐸 = arg max
𝜃

𝐿(𝜃 |𝑦, 𝑓)

Solution Approach:

• To find the solution, the following equation is commonly employed:

𝜕

𝜕𝜃
𝐿(𝜃, 𝑦) = 0

• Another common form is expressed using the logarithm:

𝜕

𝜕𝜃
ln(𝐿(𝜃, 𝑦)) = 𝑔(𝜃) = 0

This expression is often referred to as the likelihood equation and is typically
expressed in the form of a summation.

𝑔(𝜃) =
𝑛∑
𝑖=1

𝑔𝑖(𝜃)

where 𝑔(𝜃) and 𝑔𝑖(𝜃) are random vectors.

12

ML Learning Notes Chapter 7 (Dec 20) – Econometrics - Logit and Mlogit

※ Chapter 7 (7/31)

5.1 Linear Probability Model

Disregarding the characteristics of binary classification data, we still employ
the conventional linear regression for estimation. The advantages of the linear
probability model include:

• The coefficients have clear interpretations.

• At the population level:

𝐸(𝑦 |𝑥) = 𝛽0 + 𝛽1𝑥 𝛽1 =
𝑑𝐸(𝑦 |𝑥)

𝑑𝑥

𝐸(𝑦 |𝑥) = 𝑝𝑟(𝑦 = 𝑥) 𝛽1 =
𝑑𝑝𝑟(𝑦 = 𝑥)

𝑑𝑥

– If 𝑥 increases by 1, how much does the probability 𝑦 = 1 increase?

However, the drawback of the linear probability model lies in the emergence
of meaningless probabilities and negative variances. To tackle this issue:

• Fundamental Problem:

𝐸(𝑦 |𝑥) = pr(𝑦 = 1|𝑥) = 𝛽0 + 𝛽1𝑥

– The root of the problem lies in the quest for a function𝐺(𝑥) that consistently
yields values within the [0, 1] interval.

𝐸(𝑦 |𝑥) = pr(𝑦 = 1|𝑥) = 𝐺(𝛽0 + 𝛽1𝑥)

• Approach:

– Random variable distribution functions, such as the normal distribution
and logistic distribution, can serve as potential solutions.

5.2 Logistic regression

Logistic Regression Sufficiency:

Latent Regression:

𝑦∗ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . + 𝛽𝑘𝑥𝑘 + 𝑢

13

ML Learning Notes 5.2 Logistic regression

where 𝑢 follows a logistic distribution.

Density Function:

𝑓 (𝑦 |𝑥) = 𝑒−𝑥

(1 + 𝑒−𝑥)2

Distribution Function:
𝐹(𝑦 |𝑥) = 1

1 + 𝑒−𝑥

From Latent Regression to Observed Values 𝑦:

𝑦 =

{
1 if 𝑦∗ ≥ 0

0 if 𝑦∗ < 0

• A Simple Derivation:
𝑝𝑟(𝑦 = 1) = 𝑝𝑟(𝑦∗ ≥ 0)

= 𝑝𝑟(𝑢 ≥ −(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . 𝛽𝑘𝑥𝑘))
= 1 − 𝜙(−(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . 𝛽𝑘𝑥𝑘))
= 𝜙(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . 𝛽𝑘𝑥𝑘)

This is the distribution function of logistic regression. By using logistic
regression, we can ensure that the predicted values fall within the interval (0,
1).

• How to Estimate Coefficients?

– Maximum Likelihood Estimation. The coefficients should maximize the
probability of observing our dataset. Given a set of coefficients 𝛽0, 𝛽1, 𝛽2, . . . , 𝛽𝑘 ,

𝑦 =

{
1 if 𝑥 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + . . . + 𝛽𝑘𝑋𝑘 ≥ 0

0 if 𝑥 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + . . . + 𝛽𝑘𝑋𝑘 < 0
– Probability of y

𝑃(𝑦 = 1) = 𝜙(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . 𝛽𝑘𝑥𝑘)

𝑃(𝑦 = 0) = 1 − 𝑃(𝑦 = 1)

Probability of an Observation:

𝜙𝑦𝑖 (1 − 𝜙)(1−𝑦𝑖)

– Probability of All n Observations Simultaneously Occurring:
𝑛∏
𝑖=1

𝜙𝑦𝑖 (1 − 𝜙)(1−𝑦𝑖)

14

ML Learning Notes 5.3 Multi-nominal Logit

The problem of maximizing the above probability is equivalent to maxi-
mizing its logarithm:

𝑛∑
𝑖=1

(𝑦𝑖 log 𝜙 + (1 − 𝑦𝑖) log(1 − 𝜙)]

– In machine learning, the relationship with the loss function is exactly
opposite: one seeks to maximize, while the other seeks to minimize. Both
lack closed-form solutions.

5.3 Multi-nominal Logit

15

ML Learning Notes Chapter 8 (Dec 22) – Relationship between Econometrics, ML and DL

※ Chapter 8 (8/31)

Econometrics is also a modeling method. Their connection is simple: all are
based on existing data information to create models, aiming to find the func-
tional relationship between the dependent variable𝑌 and independent variables
𝑋1, 𝑋2, . . . , 𝑋𝑛 . The differences are more complex, primarily in the following as-
pects:

• Econometrics uses known functional forms, such as linear functions. Ma-
chine learning’s functional form is unknown, somewhat resembling non-
parametric econometrics. In deep learning, what influences 𝑌 are not the
original independent variables. In mathematical terms, their differences can
be roughly represented as:

Econometrics:𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + . . . + 𝛽𝑘𝑋𝑛

Machine Learning:𝑌 = 𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛)
Deep Learning:

𝑌 = 𝑓 [𝑔1(𝑋1, 𝑋2, . . . , 𝑋𝑛), 𝑔2(𝑋1, 𝑋2, . . . , 𝑋𝑛), . . . , 𝑔𝑘(𝑋1, 𝑋2, . . . , 𝑋𝑛)]

• Econometrics emphasizes "testing theories" and causal relationship identifi-
cation. It usually starts with a theoretical judgment that a certain indepen-
dent variable 𝑋𝑘 affects𝑌 in a particular direction. Econometrics then verifies
whether this directional judgment is correct. Contrarily, econometrics does
not focus much on whether 𝑋𝑘 is the most important factor influencing 𝑌.
Machine learning and deep learning emphasize "predictive accuracy," with-
out explicitly emphasizing the importance of specific independent variables.
All variables are treated equally, and determining the most important vari-
able relies on the results. In this sense, machine learning and deep learning
are more likely to discover the variables with significant impact, facilitating
the discovery of new theories and aligning with the principle that "practice
is the sole criterion for testing truth."

• Machine learning and deep learning emphasize practicality. They build mod-
els based on training sets and use test sets to check predictive accuracy. Tra-
ditional econometrics does not make a clear distinction between training and
test sets. It builds and tests models within the same dataset, acting both
as an athlete and a referee. High goodness of fit in econometrics usually
corresponds to the situation of "overfitting" in machine learning and deep
learning, which is not a good thing.

16

ML Learning Notes Chapter 8 (Dec 22) – Relationship between Econometrics, ML and DL

• Econometrics has better interpretability; variable coefficients can usually be
interpreted as "if 𝑋 changes by one unit, 𝑌 changes by how many units (or
percentage)." Machine learning and deep learning lack interpretability. This
is also a reason why they are not widely used in academic research.

• Due to the unavailability of population data, econometrics emphasizes "in-
ferring the population from the sample" and the significance of coefficients.
Machine learning and deep learning sometimes have access to population
data (such as the access control system of a certain unit), and even if they
don’t, they don’t emphasize the significance of coefficients.

17

ML Learning Notes Chapter 9 (Dec 24) – Concepts in Machine Learning

※ Chapter 9 (9/31)

Econometrics Concepts

In econometrics, we deal with the following concepts:

• Sample: A subset of the population used for analysis.

• Population: The entire set of individuals or instances about which informa-
tion is sought.

• Variable: A characteristic or property that can take different values.

• Observation: A single instance or data point in a dataset.

• Explanatory Variable (X): Independent variables used to explain or predict
the dependent variable.

• Dependent Variable (y): The variable being predicted or explained.

Machine Learning Concepts

In machine learning, the corresponding concepts are as follows:

• Data Set: Corresponds to the econometric "sample," a collection of instances
used for training and testing.

• Feature: Corresponds to the econometric "variable," a measurable property
or characteristic.

• Instance, Sample, Feature Vector: Correspond to the econometric "observa-
tion" – individual data points or records.

• Label: Corresponds to the econometric "dependent variable," the variable to
be predicted.

Machine Learning Classification

Machine learning can be classified based on different criteria:

• Supervised Learning and Unsupervised Learning:

– Supervised Learning: Involves using labeled data for training.

18

ML Learning Notes Chapter 9 (Dec 24) – Concepts in Machine Learning

– Unsupervised Learning: Utilizes unlabeled data for training.

• Batch Learning (Offline Learning) and Online Learning:

– Batch Learning: The training set remains unchanged during the learning
process.

– Online Learning: The training set changes, and new examples continu-
ously enter the training set.

• Parametric Learning and Nonparametric Learning:

– Parametric Learning: Assumes specific parameterized forms for the model.

– Nonparametric Learning: Makes no assumptions about the model pa-
rameters.

19

ML Learning Notes Chapter 11 (Dec 31) – Steps for Using Scikit-Learn Module

※ Chapter 11 (11/31)

Steps for Using Scikit-Learn Module:

1. Prepare the data.

2. Split the data into training and testing sets.

3. Train the model using the training data.

4. Make predictions based on the testing data.

5. Evaluate the model.

from sklearn import datasets

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

(1) Create an instance based on the class

LR1 = LinearRegression()

print("Type of the instance:")

print(type(LR1))

print("Attributes and methods of the instance:")

print(dir(LR1))

(2) Import data

X, y = datasets.load_diabetes(return_X_y=True)

print("Shape of X:")

print(X.shape)

(3) Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=666)

(4) Standardize the data using the training set

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

(5) Train the model using the training set

LR1.fit(X_train_scaled , y_train)

20

ML Learning Notes Chapter 11 (Dec 31) – Steps for Using Scikit-Learn Module

print("Attributes and methods of the trained model:")

print(dir(LR1))

(6) Results of the training

print("Coefficients obtained from training:")

print(LR1.coef_)

print("Intercept obtained from training:")

print(LR1.intercept_)

(7) Predictions based on the test set using the trained model

X_test_scaled = scaler.transform(X_test)

print(LR1.predict(X_test_scaled))

(8) Compare predictions with actual results and provide model

accuracy assessment

print("Model score:", LR1.score(X_test_scaled , y_test))

21

ML Learning Notes References

References

[1] Chapter 3. DRCAN. Matrix Differentiation. Link.

[2] Chapter 4. gyhccer. Gradient Descent. Link.

[3] Chapter 11. Hector. Master Scikit-learn. Link.

22

https://www.bilibili.com/video/BV1av4y1b7MM
https://www.bilibili.com/video/BV1L5411W7dA
https://www.bilibili.com/video/BV1894y1a7fs

	Chapter 3 (Dec 11) – Matrix Differentiation
	Scalar-Vector Equation Derivatives
	Scalar Equation
	Vector Equation
	Special Cases

	Linear Regression
	Chain Rule

	Chapter 4 (Dec 12) – Gradient Descent
	Gradient Descent Principles
	Algorithm Steps:
	Mathematical derivation

	Programming Implementation in PyCharm
	Bivariate Function

	Chapter 5 (Dec 14) – Econometrics - Linear Regression
	Chapter 6 (Dec 17) – Econometrics - Introduction to MLE
	Chapter 7 (Dec 20) – Econometrics - Logit and Mlogit
	Linear Probability Model
	Logistic regression
	Multi-nominal Logit

	Chapter 8 (Dec 22) – Relationship between Econometrics, ML and DL
	Chapter 9 (Dec 24) – Concepts in Machine Learning
	Chapter 11 (Dec 31) – Steps for Using Scikit-Learn Module

